Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Proc Biol Sci ; 291(2021): 20240524, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628123

RESUMO

Philopatric kin-based societies encourage a narrow breadth of conservative behaviours owing to individuals primarily learning from close kin, promoting behavioural homogeneity. However, weaker social ties beyond kin, and across a behaviourally diverse social landscape, could be sufficient to induce variation and a greater ecological niche breadth. We investigated a network of 457 photo-identified killer whales from Norway (548 encounters in 2008-2021) with diet data available (46 mixed-diet individuals feeding on both fish and mammals, and 411 exclusive fish-eaters) to quantify patterns of association within and between diet groups, and to identify underlying correlates. We genotyped a subset of 106 whales to assess patterns of genetic differentiation. Our results suggested kinship as main driver of social bonds within and among cohesive social units, while diet was most likely a consequence reflective of cultural diffusion, rather than a driver. Flexible associations within and between ecologically diverse social units led to a highly connected network, reducing social and genetic differentiation between diet groups. Our study points to a role of social connectivity, in combination with individual behavioural variation, in influencing population ecology in killer whales.


Assuntos
Orca , Animais , Orca/genética , Comportamento Social , Ecossistema , Comportamento Predatório , Dieta
2.
Mar Pollut Bull ; 199: 115936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154171

RESUMO

Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.


Assuntos
Caniformia , Phoca , Phocoena , Ácidos Ftálicos , Orca , Baleias Piloto , Animais , Cachalote
3.
Ecotoxicology ; 32(10): 1209-1220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989986

RESUMO

Standard toxicity tests expose springtails (Collembola) through soil, while dietary exposure tests with animals visible on a surface are less commonly applied. We refined a method for dietary chemical exposure for two widely distributed and abundant Collembola species: Folsomia quadrioculata and Hypogastrura viatica as existing methods were sub-optimal. Newly hatched Collembola were offered bark with a natural layer of Cyanobacteria that was either moistened with a solution of the neonicotinoid insecticide imidacloprid using a micropipette or soaked in the solution overnight. The first method was superior in producing a measured concentration close to the nominal (0.21 and 0.13 mg/kg dry bark, respectively), and resulting in sub-lethal effects as expected. The adult body size was reduced by 8% for both species, but egg production only in H. viatica. Contrastingly, soaked bark resulted in a measured concentration of 8 mg/kg dry bark, causing high mortality and no egg production in either species. Next, we identified the sub-lethal concentration-range by moistening the bark to expose H. viatica to 0, 0.01, 0.04, 0.13, 0.43 and 1.2 mg imidacloprid/kg dry bark. Only the highest concentration affected survival, causing a mortality of 77%. Imidacloprid reduced moulting rate and the body size at first reproduction. The age at first reproduction appeared delayed as some replicates did not reproduce within the experiment duration. The method of moistened bark for dietary exposure proved optimal to continuously study life history traits, such as growth and reproductive outcomes, which are important to understand effects on key events crucial for population viability and growth.


Assuntos
Artrópodes , Inseticidas , Animais , Exposição Dietética , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade
4.
Aquat Toxicol ; 263: 106696, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37757569

RESUMO

The increased export of terrestrial dissolved organic matter (terrDOM) to coastal marine ecosystems may affect local filter feeders and the local food web via the altered uptake of organic material and associated contaminants. To compare terrDOM to marine DOM (marDOM) as contaminant vectors to coastal biota, we exposed blue mussels (Mytilus sp.) to the different DOM types in combination with teflubenzuron, a widely applied lipophilic aquaculture medicine targeting salmon lice (Lepeophtheirus salmonis). A 16-day exposure of the blue mussels to DOM and teflubenzuron was followed by a depuration phase of 20 days without teflubenzuron. We calculated teflubenzuron adsorption rates and bioaccumulation factors (BAF) using a Bayesian model, expecting teflubenzuron uptake to be greater with terrDOM than marDOM due to the higher prevalence of large amphipathic humic acids in terrDOM. Humic acids have strong absorption properties and are able to envelope lipophilic molecules. Thus, humic acids can function as an efficient contaminant vector when taken up by filter feeders. Although there were varying degrees of overlap, the mussels tended to accumulate higher amounts of teflubenzuron in the DOM treatments than in the seawater control (bioaccumulation factor [BAF] in seawater: median 106 L/kg; 2.5 %-97.5 % percentile: 69-160 L/kg). Contrary to expectations, mussels exposed to marDOM showed a trend toward more bioaccumulation of teflubenzuron than those exposed to terrDOM (BAF marine 144 L/kg; 102-221 L/kg versus BAF terrestrial: 121 L/kg; 82-186 L/kg). The highest teflubenzuron accumulation was observed with the 50:50 mixture of marDOM and terrDOM (BAF mix: 165 L/kg; 117-244 L/kg). The slight difference in DOM-type accumulation rates observed in this experiment-especially the accumulation rate of terrDOM compared to that of the seawater-only treatment type-was not considered environmentally relevant. Further studies are necessary to see if the observed trends transfer to complex environmental systems.

5.
Glob Chang Biol ; 29(24): 6834-6845, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776127

RESUMO

Winter is a key driver of ecological processes in freshwater, marine and terrestrial ecosystems, particularly in higher latitudes. Species have evolved various adaptive strategies to cope with food limitations and the cold and dark wintertime. However, human-induced climate change and other anthropogenic stressors are impacting organisms in winter in unpredictable ways. In this paper, we show that global change experiments investigating multiple stressors have predominantly been conducted during summer months. However, effects of anthropogenic stressors sometimes differ between winter and other seasons, necessitating comprehensive investigations. Here, we outline a framework for understanding the different effects of anthropogenic stressors in winter compared to other seasons and discuss the primary mechanisms that will alter ecological responses of organisms (microbes, animals and plants). For instance, while the magnitude of some anthropogenic stressors can be greater in winter than in other seasons (e.g. some pollutants), others may alleviate natural winter stress (e.g. warmer temperatures). These changes can have immediate, delayed or carry-over effects on organisms during winter or later seasons. Interactions between stressors may also vary with season. We call for a renewed research direction focusing on multiple stressor effects on winter ecology and evolution to fully understand, and predict, how ecosystems will fare under changing winters. We also argue the importance of incorporating the interactions of anthropogenic stressors with winter into ecological risk assessments, management and conservation efforts.


Assuntos
Temperatura Baixa , Ecossistema , Animais , Humanos , Estações do Ano , Temperatura , Mudança Climática
6.
Chemosphere ; 329: 138646, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037350

RESUMO

Electronic waste is a source of both legacy and emerging flame retardants to the environment, especially in regions where sufficient waste handling systems are lacking. In the present study, we quantified the occurrence of short- and medium chain chlorinated paraffins (SCCPs and MCCPs) and dechloranes in household chicken (Gallus domesticus) eggs and soil collected near waste disposal sites on Zanzibar and the Tanzanian mainland. Sampling locations included an e-waste facility and the active dumpsite of Dar es Salaam, a historical dumpsite in Dar es Salaam, and an informal dumpsite on Zanzibar. We compared concentrations and contaminant profiles between soil and eggs, as free-range chickens ingest a considerable amount of soil during foraging, with potential for maternal transfer to the eggs. We found no correlation between soil and egg concentrations or patterns of dechloranes or CPs. CPs with shorter chain lengths and higher chlorination degree were associated with soil, while longer chain lengths and lower chlorination degree were associated with eggs. MCCPs dominated the CP profile in eggs, with median concentrations ranging from 500 to 900 ng/g lipid weight (lw) among locations. SCCP concentrations in eggs ranged from below the detection limit (LOD) to 370 ng/g lw. Dechlorane Plus was the dominating dechlorane compound in all egg samples, with median concentrations ranging from 0.5 to 2.8 ng/g lw. SCCPs dominated in the soil samples (400-21300 ng/g soil organic matter, SOM), except at the official dumpsite where MCCPs were highest (65000 ng/g SOM). Concentrations of dechloranes in soil ranged from below LOD to 240 ng/g SOM, and the dominating compounds were Dechlorane Plus and Dechlorane 603. Risk assessment of CP levels gave margins of exposure (MOE) close to or below 1000 for SCCPs at one location.


Assuntos
Galinhas , Hidrocarbonetos Clorados , Animais , Tanzânia , Parafina/análise , Solo , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Instalações de Eliminação de Resíduos , China
7.
J Anim Ecol ; 92(6): 1216-1229, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37055915

RESUMO

Quantifying the diet composition of apex marine predators such as killer whales (Orcinus orca) is critical to assessing their food web impacts. Yet, with few exceptions, the feeding ecology of these apex predators remains poorly understood. Here, we use our newly validated quantitative fatty acid signature analysis (QFASA) approach on nearly 200 killer whales and over 900 potential prey to model their diets across the 5000 km span of the North Atlantic. Diet estimates show that killer whales mainly consume other whales in the western North Atlantic (Canadian Arctic, Eastern Canada), seals in the mid-North Atlantic (Greenland), and fish in the eastern North Atlantic (Iceland, Faroe Islands, Norway). Nonetheless, diet estimates also varied widely among individuals within most regions. This level of inter-individual feeding variation should be considered for future ecological studies focusing on killer whales in the North Atlantic and other oceans. These estimates reveal remarkable population- and individual-level variation in the trophic ecology of these killer whales, which can help to assess how their predation impacts community and ecosystem dynamics in changing North Atlantic marine ecosystems. This new approach provides researchers with an invaluable tool to study the feeding ecology of oceanic top predators.


Connaître en détails la composition du régime alimentaire des grands prédateurs marins tels que les orques (Orcinus orca) est primordial afin d'évaluer leurs impacts sur les écosystèmes. Pourtant, à quelques exceptions près, l'écologie alimentaire de ces super-prédateurs reste mal comprise. Ici, nous utilisons notre nouvelle approche d'analyse quantitative des signatures d'acides gras (QFASA) sur près de 200 orques et plus de 900 proies potentielles pour modéliser leur régime alimentaire à travers l'Atlantique Nord. Les estimations de leurs régimes alimentaires montrent que les orques consomment principalement d'autres baleines dans l'ouest de l'Atlantique Nord (Arctique canadien, Est du Canada), des phoques dans le milieu de l'Atlantique Nord (Groenland) et des poissons dans l'est de l'Atlantique Nord (Islande, îles Féroé, Norvège). Néanmoins, ces estimations varient considérablement d'un individu à l'autre dans la plupart des régions. Cette variation alimentaire importante entre les individus doit être prise en compte dans les futures études écologiques qui s'intéressent aux orques de l'Atlantique Nord et d'ailleurs. Ces estimations révèlent des variations remarquables dans l'écologie trophique des orques tant au niveau des population que de l'individu, ce qui peut aider à évaluer l'impact de leur prédation sur la dynamique des communautés et des écosystèmes dans un contexte de changements climatiques en l'Atlantique Nord. Cette nouvelle approche fournit aux chercheurs un outil inestimable pour étudier l'écologie alimentaire des super-prédateurs océaniques.


Assuntos
Focas Verdadeiras , Orca , Animais , Ecossistema , Ácidos Graxos , Canadá , Dieta/veterinária
8.
Environ Toxicol Chem ; 42(6): 1337-1345, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942385

RESUMO

Bumblebees carry out the complex task of foraging to provide for their colonies. They also conduct pollination, an ecosystem service of high importance to both wild plants and entomophilous crops. Insecticides can alter different aspects of bumblebee foraging behavior, including the motivation to leave the hive, finding the right flowers, handling flowers, and the ability to return to the colony. In the present study, we assessed how the neonicotinoid imidacloprid affects bumblebees' foraging behavior after exposure to four different treatment levels, including field-realistic concentrations (0 [control], 1, 10, and 100 µg/L), through sucrose solution over 9 days. We observed the behavior of several free-flying bumblebees simultaneously foraging on artificial flowers in a flight arena to register the bees' complex behavior postexposure. To conduct a detailed assessment of how insecticides affect bumblebee locomotor behavior, we used video cameras and analyzed the recordings using computer vision. We found that imidacloprid impaired learning and locomotor activity level when the bumblebees foraged on artificial flowers. We also found that imidacloprid exposure reduced sucrose solution intake and storage. By using automated analyses of video recordings of bumblebee behavior, we identified sublethal effects of imidacloprid exposure at field-realistic doses. Specifically, we observed negative impacts on consumption of sucrose solution as well as on learning and locomotor activity level. Our results highlight the need for more multimodal approaches when assessing the sublethal effects of insecticides and plant protection products in general. Environ Toxicol Chem 2023;42:1337-1345. © 2023 SETAC.


Assuntos
Inseticidas , Abelhas , Animais , Inseticidas/toxicidade , Sacarose/toxicidade , Ecossistema , Comportamento Alimentar , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-36688277

RESUMO

The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2023;00:1-25. © 2023 SETAC.

10.
Environ Pollut ; 319: 121001, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610650

RESUMO

Persistent organic pollutants (POPs), including brominated flame retardants (BFRs), perfluoroalkyl substances (PFAS) and metals, can accumulate in marine mammals and be transferred to offspring. In this study, we analyzed 64 lipophilic POPs, including four emerging BFRs, in the blubber, liver and muscle of 17 adult common minke whales (Balaenoptera acutorostrata) from the Barents Sea to investigate occurrence and tissue partitioning. In addition, the placental transfer concentration ratios of 14 PFAS and 17 metals were quantified in the muscle of nine female-fetus pairs to investigate placental transfer. Legacy lipophilic POPs were the dominating compound group in every tissue, and we observed generally lower levels compared to previous studies from 1992 to 2001. We detected the emerging BFRs hexabromobenzene (HBB) and pentabromotoluene (PBT), but in low levels compared to the legacy POPs. We detected nine PFAS, and levels of perfluorooctane sulfonate (PFOS) were higher than detected from the same population in 2011, whilst levels of Hg were comparable to 2011. Levels of lipophilic contaminants were higher in blubber compared to muscle and liver on both a wet weight and lipid adjusted basis, but tissue partitioning of the emerging BFRs could not be determined due to the high number of samples below the limit of detection. The highest muscle ΣPFAS levels were quantified in fetuses (23 ± 8.7 ng/g ww), followed by adult males (7.2 ± 2.0 ng/gg ww) and adult females (4.5 ± 1.1 ng/g ww), showing substantial placental transfer from mother to fetus. In contrast, Hg levels in the fetus were lower than the mother. Levels were under thresholds for risk of health effects in the whales. This study is the first to report occurrence and placental transfer of emerging contaminants in common minke whales from the Barents Sea, contributing valuable new data on pollutant levels in Arctic wildlife.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Baleia Anã , Gravidez , Animais , Masculino , Feminino , Placenta/química , Animais Selvagens , Cetáceos , Poluentes Ambientais/análise , Monitoramento Ambiental
11.
Eur J Nutr ; 62(1): 433-441, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36087137

RESUMO

PURPOSE: Dietary biomarkers can potentially overcome the limitations of self-reported dietary data. While in ecology and archaeology, stable isotope ratios of carbon and nitrogen are widely used as biomarkers, this is not the case in nutrition research. Since the abundance of the 13C and the 15N isotope differ in food sources from plant and animal origin, stable isotope ratios of carbon and nitrogen (δ13C and δ15N) may differ in human biological material. Here, we investigated the stable isotope ratios of nitrogen and carbon in serum and urine from vegans and omnivores. METHOD: Measurement of δ15N and δ13C in serum and 24 h urine was performed by Elemental Analyzer-Isotope Ratio Mass Spectrometer in the cross-sectional study "Risks and Benefits of a Vegan Diet". The study included 36 vegans and 36 omnivores with a median age of 37.5 years (matched for age and sex), who adhered to their diet for at least 1 year. RESULTS: Both δ15N and δ13C were significantly lower in both the serum and 24 h urine of vegans compared to omnivores. δ15N either in serum or urine had 100% specificity and sensitivity to discriminate between vegans and omnivores. Specificity of δ13C was also > 90%, while sensitivity was 93% in serum and 77% in urine. CONCLUSION: δ15N both in serum and urine was able to accurately identify vegans and thus appears to be a promising marker for dietary habits.


Assuntos
Carbono , Nitrogênio , Animais , Humanos , Adulto , Dieta Vegana , Estudos Transversais , Isótopos de Carbono , Isótopos de Nitrogênio , Dieta , Biomarcadores
12.
Ecotoxicology ; 31(9): 1450-1461, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36319919

RESUMO

The use of pesticides to protect crops often affects non-target organisms vital to ecosystem functioning. A functional soil mesofauna is important for decomposition and nutrient cycling processes in agricultural soils, which generally have low biodiversity. To assess pesticide effects on natural soil communities we enclosed intact soil cores in situ in an agricultural field in 5 cm wide mesocosms. We used two types of mesh lids on the mesocosms, allowing or preventing migration of mesofauna. The mesocosms were exposed to the insecticide imidacloprid (0, 0.1, 1, and 10 mg/kg dry soil) and left in the field for 20 days. Overall, regardless of lid type, mesocosm enclosure did not affect springtail or mite abundances during the experiment when compared with undisturbed soil. Imidacloprid exposure reduced the abundance of both surface- and soil-living springtails in a concentration-dependent manner, by 65-90% at the two highest concentrations, and 21-23% at 0.1 mg/kg, a concentration found in some agricultural soils after pesticide application. Surface-living springtails were more affected by imidacloprid exposure than soil-living ones. In contrast, neither predatory nor saprotrophic mites showed imidacloprid-dependent changes in abundance, concurring with previous findings indicating that mites are generally less sensitive to neonicotinoids than other soil organisms. The possibility to migrate did not affect the springtail or mite abundance responses to imidacloprid. We show that under realistic exposure concentrations in the field, soil arthropod community composition and abundance can be substantially altered in an organism-dependent manner, thus affecting the soil community diversity.


Assuntos
Ácaros , Praguicidas , Animais , Praguicidas/toxicidade , Ecossistema , Neonicotinoides/toxicidade , Solo
13.
Mar Genomics ; 65: 100981, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35969942

RESUMO

Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 µM) and BaP (0.1 µM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3'-phosphoadenosine 5'-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.


Assuntos
Copépodes , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidade , Copépodes/genética , Copépodes/metabolismo , Fenantrenos/metabolismo , Fenantrenos/toxicidade , Transcriptoma , Poluentes Químicos da Água/toxicidade , Xenobióticos
14.
Environ Toxicol Chem ; 41(10): 2466-2478, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35860956

RESUMO

Herring gulls (Larus argentatus) are opportunistic feeders, resulting in contaminant exposure depending on area and habitat. We compared contaminant concentrations and dietary markers between two herring gull breeding colonies with different distances to extensive human activity and presumed contaminant exposure from the local marine diet. Furthermore, we investigated the integrity of DNA in white blood cells and sensitivity to oxidative stress. We analyzed blood from 15 herring gulls from each colony-the urban Oslofjord near the Norwegian capital Oslo in the temperate region and the remote Hornøya island in northern Norway, on the Barents Sea coast. Based on d13 C and d34 S, the dietary sources of urban gulls differed, with some individuals having a marine and others a more terrestrial dietary signal. All remote gulls had a marine dietary signal and higher relative trophic level than the urban marine feeding gulls. Concentrations (mean ± standard deviation [SD]) of most persistent organic pollutants, such as polychlorinated biphenyl ethers (PCBs) and perfluorooctane sulfonic acid (PFOS), were higher in urban marine (PCB153 17 ± 17 ng/g wet weight, PFOS 25 ± 21 ng/g wet wt) than urban terrestrial feeders (PCB153 3.7 ± 2.4 ng/g wet wt, PFOS 6.7 ± 10 ng/g wet wt). Despite feeding at a higher trophic level (d15 N), the remote gulls (PCB153 17 ± 1221 ng/g wet wt, PFOS 19 ± 1421 ng/g wet wt) were similar to the urban marine feeders. Cyclic volatile methyl siloxanes were detected in only a few gulls, except for decamethylcyclopentasiloxane in the urban colony, which was found in 12 of 13 gulls. Only hexachlorobenzene was present in higher concentrations in the remote (2.6 ± 0.42 ng/g wet wt) compared with the urban colony (0.34 ± 0.33 ng/g wet wt). Baseline and induced DNA damage (doublestreak breaks) was higher in urban than in remote gulls for both terrestrial and marine feeders. Environ Toxicol Chem 2022;41:2466-2478. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Charadriiformes , Bifenilos Policlorados , Ácidos Alcanossulfônicos , Animais , Cruzamento , Dano ao DNA , Monitoramento Ambiental/métodos , Fluorocarbonos , Hexaclorobenzeno , Humanos , Poluentes Orgânicos Persistentes , Bifenilos Policlorados/análise , Siloxanas
15.
Ecotoxicol Environ Saf ; 242: 113907, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901590

RESUMO

Copper is both an essential trace element and a potent pesticide. The use of copper as an antifoulant has increased in the last decades in line with the expanding aquaculture and shipping industries. In aquatic environments, it also affects non-target taxa. One of which are copepods, which constitute the central link in the marine food web. Despite their ecological importance, there are no systematic reviews of the lethal concentration range and drivers of copper toxicity in this taxon. Here, we combined literature data from 31 peer-reviewed articles recording the Lethal Concentration 50 (LC50) for copper in copepods and the experiments' respective environmental, developmental, and taxonomic parameters. The LC50 is a traditional endpoint for toxicity testing used in standardized toxicity testing and many ecological studies. In total, we were able to extract 166 LC50 entries. The variability in the metadata allowed for a general analysis of the drivers of copper sensitivity in copepods. Using a generalized additive modeling approach, we find that temperature increases copper toxicity when above approximately 25℃. Counter to our expectations; salinity does not influence copper sensitivity across copepod species. Unsurprisingly, nauplii are more susceptible to copper exposure than adult copepods, and benthos-associated harpacticoids are less sensitive to copper than pelagic calanoids. Our final model can predict sensible specific-specific copper concentrations for future experiments, thus giving an informed analytical approach to range testing in future dose-response experiments. Our model can also potentially improve ecological risk assessment by accounting for environmental differences. The approach can be applied to other toxicants and taxa, which may reveal underlying patterns otherwise obscured by taxonomic and experimental variability.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Copépodes/fisiologia , Cobre/toxicidade , Dose Letal Mediana , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
16.
Environ Pollut ; 306: 119361, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523379

RESUMO

Increasing terrestrial run-off from melting glaciers and thawing permafrost to Arctic coastal areas is expected to facilitate re-mobilization of stored legacy persistent organic pollutants (POPs) and mercury (Hg), potentially increasing exposure to these contaminants for coastal benthic organisms. We quantified chlorinated POPs and Hg concentrations, lipid content and multiple dietary markers, in a littoral deposit-feeding amphipod Gammarus setosus and sediments during the melting period from April to August in Adventelva river estuary in Svalbard, a Norwegian Arctic Aarchipelago. There was an overall decrease in concentrations of ∑POPs from April to August (from 58 ± 23 to 13 ± 4 ng/g lipid weight; lw), Hg (from 5.6 ± 0.7 to 4.1 ± 0.5 ng/g dry weight; dw) and Methyl Hg (MeHg) (from 5 ± 1 to 0.8 ± 0.7 ng/g dw) in G. setosus. However, we observed a seasonal peak in penta- and hexachlorobenzene (PeCB and HCB) in May (2.44 ± 0.3 and 23.6 ± 1.7 ng/g lw). Sediment concentrations of POPs and Hg (dw) only partly correlated with the contaminant concentrations in G. setosus. Dietary markers, including fatty acids and carbon and nitrogen stable isotopes, indicated a diet of settled phytoplankton in May-July and a broader range of carbon sources after the spring bloom. Phytoplankton utilization and chlorobenzene concentrations in G. setosus exhibited similar seasonal patterns, suggesting a dietary uptake of chlorobenzenes that is delivered to the aquatic environment during spring snowmelt. The seasonal decrease in contaminant concentrations in G. setosus could be related to seasonal changes in dietary contaminant exposure and amphipod ecology. Furthermore, this decrease implies that terrestrial run-off is not a significant source of re-mobilized Hg and legacy POPs to littoral amphipods in the Adventelva river estuary during the melt season.


Assuntos
Anfípodes , Poluentes Ambientais , Mercúrio , Poluentes Químicos da Água , Animais , Carbono , Monitoramento Ambiental , Lipídeos , Mercúrio/análise , Fitoplâncton , Estações do Ano , Poluentes Químicos da Água/análise
17.
Environ Sci Process Impacts ; 24(6): 921-931, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35583028

RESUMO

There are large knowledge gaps concerning concentrations, sources, emissions, and spatial trends of mercury (Hg) in the atmosphere in developing regions of the Southern Hemisphere, particularly in urban areas. Filling these gaps is a prerequisite for assessing the effectiveness of international regulation and for enabling a better understanding of the global transport of Hg in the environment. Here we use a passive sampling technique to study the spatial distribution of gaseous elemental Hg (Hg(0), GEM) and assess emission sources in and around Dar es Salaam, Tanzania's largest city. Included in the study were the city's main municipal waste dumpsite and an e-waste processing facility as potential sources of GEM. To complement the GEM data and for a better overview of the Hg contamination status of Dar es Salaam, soil samples were collected from the same locations where passive air samplers were deployed and analysed for total Hg. Overall, GEM concentrations ranged between <0.86 and 5.34 ng m-3, indicating significant local sources within the urban area. The municipal waste dumpsite and e-waste site had GEM concentrations elevated above the background, at 2.41 and 1.77 ng m-3, respectively. Hg concentrations in soil in the region (range 0.0067 to 0.098 mg kg-1) were low compared to those of other urban areas and were not correlated with atmospheric GEM concentrations. This study demonstrates that GEM is a significant environmental issue in the urban region of Dar es Salaam. Further studies from urban areas in the Global South are needed to better identify sources of GEM.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , Solo , Tanzânia
18.
Environ Pollut ; 304: 119191, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364186

RESUMO

Decades of atmospheric and oceanic long-range transport from lower latitudes have resulted in deposition and storage of persistent organic pollutants (POPs) in Arctic regions. With increased temperatures, melting glaciers and thawing permafrost may serve as a secondary source of these stored POPs to freshwater and marine ecosystems. Here, we present concentrations and composition of legacy POPs in glacier- and permafrost-influenced rivers and coastal waters in the high Arctic Svalbard fjord Kongsfjorden. Targeted contaminants include polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs) and chlordane pesticides. Dissolved (defined as fraction filtered through 0.7 µm GF/F filter) and particulate samples were collected from rivers and near-shore fjord stations along a gradient from the heavily glaciated inner fjord to the tundra-dominated catchments at the outer fjord. There were no differences in contaminant concentration or pattern between glacier and tundra-dominated catchments, and the general contaminant pattern reflected snow melt with some evidence of pesticides released with glacial meltwater. Rivers were a small source of chlordane pesticides, DDTs and particulate HCB to the marine system and the particle-rich glacial meltwater contained higher concentrations of particle associated contaminants compared to the fjord. This study provides rare insight into the role of small Arctic rivers in transporting legacy contaminants from thawing catchments to coastal areas. Results indicate that the spring thaw is a source of contaminants to Kongsfjorden, and that expected increases in runoff on Svalbard and elsewhere in the Arctic could have implications for the contamination of Arctic coastal food-webs.


Assuntos
Poluentes Ambientais , Praguicidas , Regiões Árticas , Clordano/análise , Ecossistema , Monitoramento Ambiental , Hexaclorobenzeno/análise , Praguicidas/análise , Rios , Svalbard
19.
Environ Sci Technol ; 56(10): 6337-6348, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35472293

RESUMO

Climate change-driven increases in air and sea temperatures are rapidly thawing the Arctic cryosphere with potential for remobilization and accumulation of legacy persistent organic pollutants (POPs) in adjacent coastal food webs. Here, we present concentrations of selected POPs in zooplankton (spatially and seasonally), as well as zoobenthos and sculpin (spatially) from Isfjorden, Svalbard. Herbivorous zooplankton contaminant concentrations were highest in May [e.g., ∑polychlorinated biphenyls (8PCB); 4.43, 95% CI: 2.72-6.3 ng/g lipid weight], coinciding with the final stages of the spring phytoplankton bloom, and lowest in August (∑8PCB; 1.6, 95% CI: 1.29-1.92 ng/g lipid weight) when zooplankton lipid content was highest, and the fjord was heavily impacted by sediment-laden terrestrial inputs. Slightly increasing concentrations of α-hexachlorocyclohexane (α-HCH) in zooplankton from June (1.18, 95% CI: 1.06-1.29 ng/g lipid weight) to August (1.57, 95% CI: 1.44-1.71 ng/g lipid weight), alongside a higher percentage of α-HCH enantiomeric fractions closer to racemic ranges, indicate that glacial meltwater is a secondary source of α-HCH to fjord zooplankton in late summer. Except for α-HCH, terrestrial inputs were generally associated with reduced POP concentrations in zooplankton, suggesting that increased glacial melt is not likely to significantly increase exposure of legacy POPs in coastal fauna.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Animais , Regiões Árticas , Monitoramento Ambiental , Cadeia Alimentar , Lipídeos , Bifenilos Policlorados/análise , Zooplâncton
20.
Environ Sci Process Impacts ; 24(10): 1544-1576, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35179539

RESUMO

This review summarizes current understanding of how climate change-driven physical and ecological processes influence the levels of persistent organic pollutants (POPs) and contaminants of emerging Arctic concern (CEACs) in Arctic biota and food webs. The review also highlights how climate change may interact with other stressors to impact contaminant toxicity, and the utility of modeling and newer research tools in closing knowledge gaps on climate change-contaminant interactions. Permafrost thaw is influencing the concentrations of POPs in freshwater ecosystems. Physical climate parameters, including climate oscillation indices, precipitation, water salinity, sea ice age, and sea ice quality show statistical associations with POPs concentrations in multiple Arctic biota. Northward range-shifting species can act as biovectors for POPs and CEACs into Arctic marine food webs. Shifts in trophic position can alter POPs concentrations in populations of Arctic species. Reductions in body condition are associated with increases in levels of POPs in some biota. Although collectively understudied, multiple stressors, including contaminants and climate change, may act to cumulatively impact some populations of Arctic biota. Models are useful for predicting the net result of various contrasting climate-driven processes on POP and CEAC exposures; however, for some parameters, especially food web changes, insufficient data exists with which to populate such models. In addition to the impact of global regulations on POP levels in Arctic biota, this review demonstrates that there are various direct and indirect mechanisms by which climate change can influence contaminant exposure, accumulation, and effects; therefore, it is important to attribute POP variations to the actual contributing factors to inform future regulations and policies. To do so, a broad range of habitats, species, and processes must be considered for a thorough understanding and interpretation of the consequences to the distribution, accumulation, and effects of environmental contaminants. Given the complex interactions between climate change, contaminants, and ecosystems, it is important to plan for long-term, integrated pan-Arctic monitoring of key biota and ecosystems, and to collect ancillary data, including information on climate-related parameters, local meteorology, ecology, and physiology, and when possible, behavior, when carrying out research on POPs and CEACs in biota and food webs of the Arctic.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Cadeia Alimentar , Mudança Climática , Poluentes Orgânicos Persistentes , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Regiões Árticas , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...